

Nissin Chemical Industry Co., Ltd. Functional Materials for Inkjet Ink

Product Line

Functional Materials for Inkjet Ink

We manufacture and sell products that can be applied to various kinds of ink. We offer a wide lineup of products designed to improve functions of inkjet ink.

OLFINE

EXP. Series

These acetylenic surfactants have the ability to lower the dynamic surface tension and the dynamic contact angle.

SILFACE

SAG Series

These silicone surfactants have the abilities to lower the static surface tension and to wet materials, particularly non-absorbable materials.

CHALINE

Е туре

These silicone/acrylic hybrid resins can provide abrasion resistance thanks to the excellent sliding properties of silicone resins.

Inkjet ink classification chart

PD-600 Series

These acetylenic surfactants can, in small amounts, quickly disperse water insoluble dyes.

VINYBLAN

700 Series

These vinyl chloride emulsions are made using acrylic aqueous solutions as protective colloids in polymerization. These emulsions exhibit excellent pigment dispersibility thanks to the fine particles and the dispersibility that is characteristic of vinyl chloride resins.

SOLBIN

This vinyl chloride-vinyl acetate copolymer resin is soluble in eco solvent thanks to the technology of copolymerization with vinyl acetate; they also exhibit the excellent pigment dispersibility characteristic of vinyl chloride resins.

List of products applicable to various types of inkjet ink

OLFINE

EXP. PD-6 **Series**

Water-based pigment type									
Dispersibility		\bigcirc		p .7					
Nozzle suitability	0		\bigcirc	p .7					
High-speed printability	p .3-4		\bigcirc	\bigcirc					
Wettability	p.3-4		p.5-6						
Adhesion				\bigcirc					
Abrasion resistance					p.8				

Water-based disperse dye type								
Dispersibility	p .10	p .9		\bigcirc				
Nozzle suitability	0		0					
High-speed printability	\bigcirc		\bigcirc					
Wettability	\bigcirc		\bigcirc					
Abrasion resistance					0			

Eco-solvent-based pigment type								
Dispersibility						\bigcirc		
Nozzle suitability			\bigcirc			p .11		
Adhesion						\bigcirc		
Heat stability						0		
Solubility						0		

Eco-solvents: Acetate-based solvents and glycol-based solvents

We offer various product grades in addition to those listed in this catalog. For more information about each product or product series, please contact us. We can provide catalogs, technical data sheets, safety data sheets, etc

NISSIN CHEMICAL INDUSTRY CO., LTD. FUNCTIONAL MATERIALS FOR INKJET INK CATALOGUE

E	SILFACE	VINYBLAN	CHALINE	SOLBIN
D-600 Series	SAG Series	700 Series	Е Туре	CLL3

OLFINE

Water-based pigment type

Feature	s of OLFINE	Structural diagra	m of acetylene glycol
OLFINE is an acety lower the dynamic contact angle. The ability compared to suitable for high-sp Results of wettab	Plenic surfactant that has the ab surface tension and the dynam OLFINE EXP. Series is superior o conventional types and is the beed printing.	ility to hic in said refore ith pigment ink CH ₃ CH ₃ C – C	
	A Competitor's Wetting Agent	A Competitor's Defoaming Agent	OLFINE
Wettability Test	A		
Defoaming Test		0 30	0 40 10 30
	Exhibits high wettability but foams	Defoams but repels liquid	Exhibits high wettability and foams a little

Conventional grade

	Effective ingredients	Solubility in water	Dynamic surface tension (mN/m)		Contact angle(°)	Foaming p	roperty (mL)
	(%)	(%)	1Hz	10Hz	SUS304	Immediately after addition	After 5 minutes
E1010	100	>1	41	45	70	17	2

The EXP. Series was developed to be better suited for high-speed printing.

OLFINE EXP. Series

This series is suitable for high-speed printing.

Basic properties

	Effective ingredients	Solubility in water	Dynamic sur	face tension I/m)	Contact angle(°)	Foaming property (mL)	
	(%)	(%)	1Hz	10Hz	SUS304	Immediately after addition	After 5 minutes
EXP.4001	80	0.01~0.05	26	34	14	2	0
EXP.4200	75	0.50~1.00	32	40	32	3	0
EXP.4123	40	5.00~10.0	40	50	56	3	0
EXP.4300	60	0.10	26	37	17	25	8

Comparison of properties between 0.1% aqueous solutions of OLFINE EXP. 4300 and E1010

It's very important for surfactants to migrate to the newly created surface as rapidly as possible and to reduce the surface tension particularly at the high speed printing such as inkjet ink.

Wettability ... Compared to the E1010, the EXP. 4300 is more effective for lowering the contact angle immediately after jetting ink onto a print surface. As a wetting agent, it is particularly suitable for providing wettability to substrate with low surface energy.

Suitability for high-speed printing ... The EXP. 4300 exhibits low dynamic surface tension, thus enabling stable ejection of ink droplets even during high-speed printing.

f dynamic contac material: SUS304	t angle _*	EXP.4300 E1010
20	30	40
Times (ms)	*Measuring	method is on p.13.

Some of our acetylenic surfactant products can be used not only as wetting agents but also as defoaming agents or dispersants.

SILFACE SAG Series

As wetting agents, this series of silicone surfactants has the ability to lower the static surface tension of water and organic solvent mixtured ink and is highly effective for improving ink wettability, particularly on non-absorbable media.

Basic properties

	Appearance	Effective ingredients(%)	Ionicity	Solubility in water (%)
SAG503A	Clear light brown	>95	Non-ionic	>10

Wettability Comparison of static surface tension and contact angle provided by different types of solvents

80 ^

70 ⁻

60

50 ·

40

30 ·

20

10

0 -

°

Substrate: PET

Substrate: PVC

Without SAG503A With SAG503A

Ocontact angle immediately after jetting ink onto SUS304

Comparison of other grades in the SAG series

		Solvent used	Solvent	Without		SILF	ACE	
		Solvent used	SP value	SAG	SAG005	SAG008	SAG016	SAG020
		Propylene glycol	15.9	_	2	3	2	1
m	patibility	Diethylene glycol	15.3	_	3	3	2	1
app	earance)	Ethylene glycol monoethyl ether	11.5	_	3	3	3	2
		Ethylene glycol monopropyl ether	11.1	_	3	3	3	3
			[Compatibili [.]	ty (appearar	nce) score] 3:	soluble, 2: ur	niformly cloud	y, 1: insoluble
		Propylene glycol	15.9	50	30	29	22	22
atio	c surface	Diethylene glycol	15.3	54	29	28	22	21
(mN/m)		Ethylene glycol monoethyl ether	11.5	41	27	27	22	24
		Ethylene glycol monopropyl ether	11.1	28	23	22	27	22
		Propylene glycol	15.9	63	75	61	6	61
	DET	Diethylene glycol	15.3	69	67	59	32	60
	PEI	Ethylene glycol monoethyl ether	11.5	55	48	54	4	40
		Ethylene glycol monopropyl ether	11.1	28	15	16	25	8
		Propylene glycol	15.9	67	67	62	9	63
		Diethylene glycol	15.3	72	72	65	34	68
0	FVC	Ethylene glycol monoethyl ether	11.5	49	49	49	14	40
		Ethylene glycol monopropyl ether	11.1	28	15	16	28	7
		Propylene glycol	15.9	56	44	42	6	55
	Coated	Diethylene glycol	15.3	73	54	40	1	71
	paper	Ethylene glycol monoethyl ether	11.5	30	20	23	1	16
		Ethylene glycol monopropyl ether	11.1	15	7	8	12	5

		Solventused	Solvent	Without		SILF	ACE	
		Solvent used	SP value	SAG	SAG005	SAG008	SAG016	SAG020
		Propylene glycol	15.9	_	2	3	2	1
Compatibility (appearance)		Diethylene glycol	15.3	-	3	3	2	1
		Ethylene glycol monoethyl ether	11.5	-	3	3	3	2
		Ethylene glycol monopropyl ether	11.1	_	3	3	3	3
[Compatibility (appearance) score] 3: soluble, 2: uniformly cloudy, 1: insolu								y, 1: insoluble
		Propylene glycol	15.9	50	30	29	22	22
Statio	c surface	Diethylene glycol	15.3	54	29	28	22	21
le (r	nSiOn nN/m)	Ethylene glycol monoethyl ether	11.5	41	27	27	22	24
		Ethylene glycol monopropyl ether	11.1	28	23	22	27	22
		Propylene glycol	15.9	63	75	61	6	61
		Diethylene glycol	15.3	69	67	59	32	60
	PEI	Ethylene glycol monoethyl ether	11.5	55	48	54	4	40
ate (°		Ethylene glycol monopropyl ether	11.1	28	15	16	25	8
bstra		Propylene glycol	15.9	67	67	62	9	63
o su		Diethylene glycol	15.3	72	72	65	34	68
gle t	PVC	Ethylene glycol monoethyl ether	11.5	49	49	49	14	40
ct an		Ethylene glycol monopropyl ether	11.1	28	15	16	28	7
ontad		Propylene glycol	15.9	56	44	42	6	55
Ŭ	Coated	Diethylene glycol	15.3	73	54	40	1	71
	paper	Ethylene glycol monoethyl ether	11.5	30	20	23	1	16
		Ethylene glycol monopropyl ether	11.1	15	7	8	12	5

		Solvent used	Solvent	Without		SILF	ACE	
		Solvent used	SP value	SAG	SAG005	SAG008	SAG016	SAG020
ompatibility		Propylene glycol	15.9	_	2	3	2	1
		Diethylene glycol	15.3	_	3	3	2	1
app	earance)	Ethylene glycol monoethyl ether	11.5	_	3	3	3	2
		Ethylene glycol monopropyl ether	11.1	-	3	3	3	3
[Compatibility (appearance) score] 3: soluble, 2: uniformly cloudy, 1:							y, 1: insoluble	
		Propylene glycol	15.9	50	30	29	22	22
atio	surface	Diethylene glycol	15.3	54	29	28	22	21
(mN/m)		Ethylene glycol monoethyl ether	11.5	41	27	27	22	24
		Ethylene glycol monopropyl ether	11.1	28	23	22	27	22
		Propylene glycol	15.9	63	75	61	6	61
	DET	Diethylene glycol	15.3	69	67	59	32	60
、	PEI	Ethylene glycol monoethyl ether	11.5	55	48	54	4	40
~ ~ ~		Ethylene glycol monopropyl ether	11.1	28	15	16	25	8
2		Propylene glycol	15.9	67	67	62	9	63
5		Diethylene glycol	15.3	72	72	65	34	68
20	FVC	Ethylene glycol monoethyl ether	11.5	49	49	49	14	40
2		Ethylene glycol monopropyl ether	11.1	28	15	16	28	7
		Propylene glycol	15.9	56	44	42	6	55
)	Coated	Diethylene glycol	15.3	73	54	40	1	71
	paper	Ethylene glycol monoethyl ether	11.5	30	20	23	1	16
		Ethylene glycol monopropyl ether	11.1	15	7	8	12	5

NISSIN CHEMICAL INDUSTRY CO., LTD. FUNCTIONAL MATERIALS FOR INKJET INK CATALOGUE

Without SAG: Each type of solvent 30%, water 70.0% With SAG: Each type of solvent 30%, water 69.5%, SAG 0.5%

[•] **Evaluation method** Without SAG503A: Each type of solvent 30%, water 70.0% With SAG503A: Each type of solvent 30%, water 69.5%, SAG503A 0.5%

NISSIN CHEMICAL INDUSTRY CO., LTD. FUNCTIONAL MATERIALS FOR INKJET INK CATALOGUE

CHALINE

VINYBLAN 700 Series

The VINYBLAN 700 Series consists of vinyl chloride emulsions in which acrylic aqueous solutions or the like serve as protective colloids. These water-based emulsions are made without any solvents or surfactants; thus, they exhibit excellent pigment dispersibility.

Basic properties

	Solid content (%)	Viscosity (mpa•s)	PH	Average particle size(nm)	Tg(℃)	Acid value (KOHmg/g)
700	30	50	7.5	30	70	57
701	30	50	7.5	30	73	46
755	25	50	7.5	30	34	75

Composed of fine particles without any coarse particles that may affect ink ejection

Osolvent miscibility Highly miscible with alcohol- or glycol-based solvents.

• Evaluation method: VINYBLAN and each type of solvent were mixed in a ratio of 1:1 and the stability was checked.

Type of solvent				
Alcohol-based	Methanol, Ethanol, Isopropanol			
Glycol-based	Diethylene glycol, Triethylene glycol, Propylene glycol			
Glycol-ether-based	Triethylene glycol monobutyl ether, Dipropylene glycol monomethyl ether			
Diol-based	1,2-Hexanediol, 1,5-Pentanediol			

Composition (wt%)

•Composition of dispersion liquid	Formula A	Formula B
VINYBLAN 701	10	0
Polyurethane dispersion *(polycarbonate-based)	79.5	89.5
Carbon black *Mitsubishi Chemical MA-100	10	10
Wetting agent OLFINE EXP.4300	0.5	0.5

• Dispersion method Composition ratio: 50 g of Formula A or B liquid was mixed with 5 g of beads. Beads: Zirconia beads (dia. 5 mm) Disperser: Paint shaker (2-hour dispersion)

Microscopic photographs of dispersion liquids

The dispersion liquid to which VINYBLAN was added exhibited almost no changes in viscosity over time.

The dispersion liquid containing VINYBLAN enabled carbon black to disperse more uniformly than the other dispersion liquid.

- Base material: PET film
- Coating condition: Bar Coater No. 7 (wet, 6 g/m²)
- Drying conditions: 105°C for 5 minutes

CHALINE E Type

CHALINE E Type are silicone/acrylic hybrid resins. Thanks to the sliding property of silicone, the friction coefficients decrease and this CHALINE improves the abration resistance.

Basic properties

	Composition	Solid content	Viscosity (mpa•s)	PH	Average particle size (nm)	Ionicity
E-370	Acrylic modified	45	100 or less	7	300	Anion
LC-190	Specially modified	44	100 or less	7	300	Anion
E-790	Specially modified	44	100 or less	7	300	Anion

Evaluation method

- Base material: PET film
- Drying temperature: 80°C for 2 minutes
- Film thickness: Approx. 10 µ (dry)

Specimen: Each grade of CHALINE was mixed with a urethane emulsion at a ratio of 10% (of the total solid content).

• Coefficients of static and kinetic friction The friction coefficients of test pieces were measured using a surface property tester.

Water-based disperse dye type

OLFINE PD-600 Series

The OLFINE PD-600 Series of acetylenic dispersants can, in small amounts, quickly disperse water insoluble dyes. The series can also prevent changes in properties over time after dispersion.

Basic properties

	Appearance	Effective ingredients (%)	Ionicity	Solubility in water(%)	Melting point (°C)
PD-611	Light yellow paste	100	Anion	>10	30
PD-631	Light yellow paste	100	Anion	>10	20

 Formulation 	General	OLFINE			
	prescription	Prescription A	Prescription B		
C.I.Disperse Red60(dye)	15	15	15		
Sodium ligninsulfonate	15	-	—		
PD-611		1.5			
PD-631			1.5		
Pure water 70 83.5					
• Dispersion method Composition ratio: Dispersion liquid and beads were mixed in a ratio of 1:3. Beads: Zirconia beads (dia. 0.3 mm) Disperser: Paint shaker (640 rpm/min)					

Sodium ligninsulfonate: Dispersant commonly used for water-based dye-type ink The OLFINE PD600 Series exhibits good dispersibility in a smaller amount compared to sodium ligninsulfonate.

Table of compatibility with various dyes

Color		Yellow	Red	Bl	Blue	
C.I.N	ame	DY-54	DR-60	DB-359	DB-360	DBr-27
Dye		15	15	15	15	15
Required amount of the PD Series		1.5	1.5	3.0	3.0	1.5
Pure water		83.5	83.5	82.0	82.0	83.5
PD-611	25℃ x7days	3	3	3	3	3
Preservation stability	60°C x7days	3	3	3	1	1
PD-631	25°C x7days	3	3	3	3	3
Preservation stability	60℃ x7days	3	3	3	2	2

[Rate of change in particle size] 3: less than 10%, 2: 10 to 15%, 1: 15% or more

The OLFINE EXP. Series of dispersion aids that can reduce the dispersion time when used with sodium ligninsulfonate. Dispersion liquids containing OLFINE exhibit excellent stability.

Basic properties

	Effective ingredients	Solubility in	Dynamic tensior	surface N(mN/m)	Contact angle(°)	Foaming property(mL)	
(%)		water (%)	1Hz	10Hz	SUS304	Immediately after addition	After 5 minutes
EXP.4123	40	5~10	40	50	56	3	0

Dispersibility

Use of OLFINE EXP. Series with sodium lignins

Obisperse dye ink manufacturing process diagram

Ink that contains the OLFINE PD-600 Series exhibits excellent preservation stability, regardless of dye type.

OLFINE EXP. Series

ulfonate	Formulation	Without OLFINE	With OLFINE
sion time	C.I.Disperse Red 60 (dye)	15	15
	Sodium ligninsulfonate	15	15
-	OLFINE EXP. 4123		0.5
	Pure water	70	69.5

5

6

 Dispersion method Composition ratio: Dispersion liquid and beads were mixed in a ratio of 1:3. Beads: Zirconia beads (dia. 0.3 mm) Disperser: Paint shaker (640 rpm/min)

Eco-solvent-based pigment type

SOLBIN CLL3

SOLBIN CLL3 is a vinyl chloride-vinyl acetate copolymer resin that is soluble in eco solvent thanks to the technology of copolymerization with vinyl acetate. It also exhibits the excellent pigment dispersibility characteristic of vinyl chloride resins.

Basic properties

	Compositi	on ratio(%)	Degree of	K-value Molecular		Glass transition	
	VC	VAc	polymerization		weight(Mn)	point(℃)	
CLL3	82	18	260	37	1.6×10⁴	70	

Nozzle suitability

Filterability

Conditioning method

- **1** 5 wt% SOLBIN was added to 10 wt% cyclohexanone (Anone).
- **2** The mixture was stirred at 50°C for 60 minutes.
- The mixture stirred in step 2 was added to a mixed solution of 25 wt% propylene glycol monomethyl ether acetate (PMA) and 60 wt% ethylene glycol mono-n-butyl ether acetate (EBA), and this mixed solution was stirred for approximately 15 minutes.

Evaluation method

A 4 kg load was applied to 100 ml of the solution, and the time was measured until all of the solution passed through the filter.

Filter Passing Speed (Filter: 1µm)

Formulation

Examples of formulations of water-based pigment-type ink

	Unit (wt%)	Example of material added	Unit (wt%)
Pigment dispersion (Pigment)	10~30	VINYBLAN 701 dispersion liquid with carbon black	30.0
Solvent A	5~20	Dipropylene glycol monomethyl ether	10.0
Solvent B	5~20	Isopropanol	10.0
Resin (binder)	10~30	VINYBLAN 755	30.0
Wetting agent	0.1~1.0	OLFINE EXP. 4300	0.5
Additive to provide abrasion resistance	1~10	CHALINE LC-190	10.0
Defoaming agent	0.1~0.5	OLFINE D-10PG	0.1
Water	Remainder	Water	9.4

○ Coating method

Each film was coated with the solution above using Bar Coater No. 6 (wet, approx. 14 g/m²) and dried at 80°C for 1 minute. Then the several evaluations were conducted.

Evaluation

Evaluation item		Evaluation result	Evaluation method
	PVC	3	
Adhesion	PET	3	Cellophane tape peeling test
	NYLON	3	
Abrasion resistance		3	Rubbing test using gauze
Water friction resistance		3	Rubbing test using gauze moistened with water
Alcohol resistance		3	Rubbing test using gauze moistened with ethanol
Acid resistance		3	Rubbing test using gauze moistened with a 1% hydrochloric acid aqueous solution

3: No part of the coated surface peeled off. 2: Less than 50% of the coated surface peeled off. 1: 50% or more of the coated surface peeled off.

CExamples of applicable materials

Solvent A (glycol-based)	Propyl Triethy Triethy Diprop
Solvent B (alcohol-based)	Benzyl
Binder	VINYB
Wetting agent	OLFIN
Agent for providing abrasion resistance	CHALI
Defoaming agent	OLFIN

SOLBIN CLL3 solutions have low viscosity and good filterability, enabling the design of ink with excellent nozzle suitability.

11

 $\ensuremath{^*}$ This is reference data; it does not guarantee inkjet ink performance.

Rubbing test conditions: 30 strokes of rubbing with a 200 g load (Substrate; PET)

vlene glycol, Diethylene glycol, nylene glycol, 2-Pyrrolidone, Glycerin, nylene glycol monobutyl ether, opylene glycol monomethyl ether, etc.

l alcohol, Isopropanol, 2-Phenoxyethanol, etc.

BLAN 700 Series, various emulsions, various dispersions

NE EXP. Series, OLFINE E Series, SILFACE

INE E-370, LC-190, E-790

NE D-10PG, E1004

Glossary, Measuring method

○ Surface tension (static/dynamic)

By reason of intermolecular forces, surface tension is the tendency of liquid surfaces to shrink into the minimum surface area possible.

⇒This tendency is referred to as interfacial tension, and especially as surface tension at a liquid-air interface.

Surface tension that becomes equilibrated over time is referred to as "dynamic surface tension", while surface tension that is in equilibrium is referred to as "static surface tension".

⇒Generally, dynamic surface tension tends to be higher than static surface tension and it is harder to wet a material in contact with a liquid.

Pressure

Air

<Dynamic surface tension> Surface adsorption of surfactant: Not in equilibrium <Static surface tension> Surface adsorption of surfactant: In equilibrium

ODynamic Surface Tension

Different from "Static Surface Tension" obtained by measuring the surface tension of a static interface, the dynamic surface tension represents surface tension of an interface in motion. Liquid is flowing due to agitation, circulation, application, etc. in many cases when "wetting" is actually considered; therefore, the dynamic surface tension is a more practical index of "wetting."

Contact Angle

A contact angle represents how easily liquid is wet to a solid surface. A surface that is easy to wet (liquid that easily wets a surface) has a low contact angle, and a surface that is hard to wet (liquid that has difficulty wetting a surface) has a high contact angle.

○ Static surface tension Wilhelmy method (plate method or vertical plate method)

When a plate touches a liquid surface, the liquid moves up and wets the plate, and the surface tension acts along the plate's perimeter as a force pulling the plate into the liquid. To determine the surface tension, the magnitude of this force is measured.

For more information on functional materials for inkjet ink, please inquire.

Sales headquarters

Shin Otemachi Building, 2-2-1 Otemachi, Chiyoda-ku, Tokyo 100-0004 Japan TEL. +81-3-6262-0276 (main) FAX. +81-3-6262-0277

Nissin Chemical Industry Shanghai Co.,Ltd. (100% owned subsidiary)Grand Cru Room 50, 5F GIFC I, 1438 Hongqiao Road, Shanghai 201103 P.R.China...TEL.+86-21-6197-6251FAX.+86-21-6197-6210

Main office and factory

Website https://www.nissin-chem.co.jp/english/

- Please follow the instructions on the Safety Data Sheet and Technical Data Sheet.
- These products are for industrial use only.
- •The data presented in this catalogue are representative values. Always perform on-site testing prior to implementation to make sure the product suits your needs. Please be advised that the usages described here may infringe existing patents. Due to our continuous quality improvements and specification upgrades, the information in this catalogue are subject to change without notice.
- Please contact us before reproducing or quoting this catalogue.